Participants On This Publication
Organisms In This Publication
Galena Gene Ackerman
Graduate Student's Thesis, 2006

The fate and behavior of redox-active chemical species in geothermal systems is linked with the metabolic processes of chemotrophic thermophilic microorganisms. The major goal of the current work was to perform a thorough geochemical analysis of redox active species in geothermal outflow channels, and utilize these measurements to quantify the Gibbs free energy (ΔGrxn) values for numerous oxidation-reduction reactions that represent potential chemolithotrophic metabolisms. Insights gained from energetic analyses can be used to structure hypotheses regarding novel microbial metabolisms and to guide cultivation strategies for isolating relevant microorganisms. A comprehensive suite of geochemical parameters, including major ions, trace elements, redox-active species and dissolved gases, were analyzed and monitored in vertical transects of 11 geothermal outflow channels in Yellowstone National Park from 2003-2005. The geothermal springs chosen for this study contained strikingly different aqueous and solid-phase geochemistry. These systems exhibited a wide range of conditions, including ranges in pH (2.7 to 7.0), temperature (60 °C to 92 °C), Cl- (0.01 to 23 mM)), SO42- (0.4 to 7.5 mM), NH4+ (0.02 to 5.7 mM), CO2 (aq) (0.1 to 4.5 mM), Fe (0.2 to 230 µM), and As (0.03 to 130 µM). The predominant changes in geochemistry occurring within geothermal outflow channels were consistently related to the dynamics of air-water gas exchange. In all springs studied, dissolved gases including H2, CO2, CH4 and H2S decreased down gradient of geothermal discharge, while O2 ingassing resulted in increases in dissolved O2. Calculated free energy (ΔGrxn) values for balanced oxidation-reduction reactions suggest that numerous electron donor/acceptor combinations are exergonic in these systems. Reactions where H2, CH4, H2S, S0, AsIII, FeII and or NH4 serve as electron donors were all significantly exergonic (< -30 kJ mole-1 electron at all sites) when O2 was the electron acceptor, even when O2 levels were at the detection limit (3 µM). The geothermal systems included in this study all exhibited significant changes in microbial population distribution from near source-water conditions to sediments lining the outflow channels, consistent with the hypothesis that geochemical gradients and temperature correlate with microbial population distribution.

NOTE: the article text supplied here is for educational purposes only.
*Don't have Adobe Reader? Get the latest version.

NOTE: Some versions of Adobe Reader have problems with Google Chrome. Either resize the browser to view the paper or enable the Chrome internal PDF viewer by entering chrome://plugins in your address bar and clicking enable for the Chrome PDF Viewer plugin.