Rapid Oxidation of Arsenite in a Hot Spring Ecosystem, Yellowstone National Park

HEIKO W. LANGNER, COLIN R. JACKSON, TIMOTHY R. MCDERMOTT, AND WILLIAM P. INSKEEP*
Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University—Bozeman, Bozeman, Montana 59717-3120

Geothermal springs within Yellowstone National Park (YNP) often contain arsenic (As) at concentrations of 10–40 μM, levels that are considered toxic to many organisms. Arsenite (As(III)) is often the predominant valence state at the point of discharge but is rapidly oxidized to arsenate (As(V)) during transport in shallow surface water. The current study was designed to establish rates and possible mechanisms of As(III) oxidation and to characterize the geochemical environment associated with predominant microbial mats in a representative acid–sulfate–chloride (pH 3.1) thermal (58–62 °C) spring in Norris Basin, YNP. At the spring origin, total soluble As was predominantly As(III) at concentrations of 33 μM. No oxidation of As(III) was detected over the first 2.7 m downstream from the spring source, corresponding to an area dominated by a yellow filamentous S²-rich microbial mat. However, rapid oxidation of As(III) to As(V) was observed between 2.7 and 5.6 m, corresponding to termination of the S²-rich mats, decreases in dissolved sulfide, and commencement of a brown Fe/As-rich mat. Rates of As(III) oxidation were estimated, yielding an apparent first-order rate constant of 1.2 min⁻¹ (half-life = 0.58 min). The oxidation of As(III) was shown to require live organisms present just prior to and within the Fe/As-rich mat. Complementary analytical tools used to characterize the brown mat revealed an As:Fe molar ratio of 0.7 and suggested that this filamentous microbial mat contains iron(III) oxyhydroxide coprecipitated with As(V). Results from the current work are the first to provide a comprehensive characterization of microbially mediated As(III) oxidation and the geochemical environments associated with microbial mats in acid–sulfate–chloride springs of YNP.

Introduction

Geothermal springs provide unique environments for the evolution and establishment of microbial communities. Besides adaptation to elevated temperatures, microorganisms inhabiting such environments must cope with a variety of extreme chemical conditions such as low pH and high concentrations of toxic elements. For example, concentrations of arsenic in geothermal springs of Yellowstone National Park (YNP), Wyoming, commonly range from 10 to 40 μM (1, 2), but we have measured concentrations as high as 2 mM.

* Corresponding author phone: (406)994-5077; fax: (406)994-3933; e-mail: binskeep@montana.edu.

Materials and Methods

Aqueous Chemistry. The thermal spring selected for this study (44°43′54.8″ N, 110°42′39.9″ W, Spring No. NHSP106, thermal inventory of YNP) is typical of many springs found in the Hundred Springs Plain of Norris Geyser Basin. The spring was selected after preliminary analyses in October 1999 that showed rapid oxidation of As(III) upon discharge. This spring discharges water between 58 and 63 °C (observed over a 1-yr period) and exhibits a distinctive sequence of
TABLE 1. Description of Thermal Spring Sampling Locations Including Spring Data As Determined on November 16, 1999

<table>
<thead>
<tr>
<th>sample locations</th>
<th>visual features</th>
<th>temp (°C)</th>
<th>distance (m)</th>
<th>travel time (min)</th>
<th>velocitya (m min⁻¹)</th>
<th>As(V): As(ts)b (%)</th>
<th>As(ts)c (µg L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>spring source</td>
<td></td>
<td>63</td>
<td>0</td>
<td>0</td>
<td><0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yellow mat</td>
<td></td>
<td>60</td>
<td>1.7</td>
<td>33</td>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yellow mat end</td>
<td></td>
<td>58</td>
<td>2.7</td>
<td>0.47</td>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no mat</td>
<td></td>
<td>55</td>
<td>3.7</td>
<td>0.55</td>
<td>12.5</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>brown mat start</td>
<td></td>
<td>54</td>
<td>4.4</td>
<td>0.67</td>
<td>5.8</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>brown mat</td>
<td></td>
<td>51</td>
<td>5.0</td>
<td>0.82</td>
<td>4.0</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>transition</td>
<td></td>
<td>49</td>
<td>5.9</td>
<td>0.92</td>
<td>3.0</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>brown-green mat</td>
<td></td>
<td>46</td>
<td>5.6</td>
<td>1.02</td>
<td>3.0</td>
<td>0.45</td>
<td></td>
</tr>
</tbody>
</table>

- Determined by timing suspended particulates in the spring that had been loosened from the spring bottom.
- Calculated for the interval preceding the respective sampling location.
- Average ratios of As(V): As(ts); total soluble arsenic (As(ts)) = 33µM throughout spring sampling interval.

The table lists the temperature, distance, and travel time for various sample locations at the thermal spring. The concentrations of As(V) and As(ts) are also provided.

well-separated microbial mats covering the spring floor in both longitudinal and lateral directions. The data presented in this paper were collected during four field trips on November 16, 1999; January 26, 2000; June 6, 2000; and September 13, 2000. A transect consisting of eight sampling points following the flow channel was established from the spring source to 5.6 m downstream (Table 1), at which point the channel merged with flow from other spring sources. At two of the sampling locations (4.4 and 5.0 m), analyses were routinely conducted in duplicate. Relative standard deviations (RSD) between duplicate samples were 5.5% for As(V), 0.7% for total soluble As, less than 1.5% for SO₄²⁻, and major metals, and 31% for sulfide. The high RSD for sulfide at 4.4 and 5.0 m was due only to the fact that sulfide concentrations for these sample locations were often near the reported detection limit (3 µM) for the analytical procedure used in this study (15, discussed below); at higher sulfide concentrations, duplicate samples read normally within 5%. The velocities were measured at 30 m of spring water on November 16, 1999, when most of the reported in situ measurements were conducted. To determine spring water travel times, a spatula was used to bring fine-grained sediments covering the spring bottom into suspension; the reported velocities and travel times were based on the times required for the front of these suspended particulates to travel between individual sampling points in the spring. The velocities were variable throughout the spring transect in response to the fluid characteristics of the spring; this was especially noticeable from 2.7 to 3.7 m where higher velocities were due to a narrower section of the spring channel. Spring water temperatures and temperature-compensated pH were measured on site using a Mettler Toledo MA130 portable pH meter equipped with a Mettler Toledo IP67 NTC electrode and calibrated using buffers at pH 1.68 and pH 4.01.

Aqueous samples were withdrawn from transect locations using a 20-mL syringe and immediately (<10–20 s) split into three subsamples. For total dissolved sulfide, a 7.5-mL subsample was filtered (0.22-µm) into a test tube containing 0.5 mL of diamine sulfuric acid reagent; 4 drops of FeCl₂ reagent were added followed by 1.6 mL of (NH₄)₂PO₄ reagent after 5 min (modified after ref 15). Spectrophotometric analysis was performed in the laboratory within 30 h of sampling, after verifying the stability of the blue complex over at least 2 days. A second aliquot (5 mL) was filtered into a 15-mL HDPE plastic bottle, acidified with 0.1 mL of 12.1 M HCl, and immediately purged with N₂(g) for 6 min to remove dissolved sulfide, using a customized portable N₂(g) sparging apparatus for field applications. This sample was analyzed for As(ts) using hydride generation atomic absorption spectrometry (HG-AAS; 16), and for S, Na, K, Ca, Mg, Fe, and Al using inductively coupled plasma emission spectrometry (ICP-ES). The concentrations of total dissolved S in the acidified and purged samples were shown to equal the levels of dissolved SO₄²⁻ in selected samples analyzed using ion chromatography. A third aliquot of each spring water sample was prepared on site for the determination of aqueous As(V) by filtering 5 mL into a 15-mL HDPE bottle containing 1 mL of 2 M Tris buffer (pH 6). While sparging the mixture with N₂(g), 1 mL of 0.25 M NaOH and 0.79 M NaBH₄ was added in 0.2-mL increments over 4 min to reduce As(III) to arsine gas. The mixture was N₂(g) sparged for an additional 3 min to purge arsine. This sample was then preserved in 0.1 M HCl prior to As(V) analysis using HG-AAS. Concentrations of As(III) were determined by difference between As(ts) and As(V) based on previously reported analytical protocols for determining As(V) and As(III) (16). Separate samples were collected for immediate, on-site analysis of total soluble Fe (Fe(ts)) and Fe(II) using the colorimetric Ferrozine method (17). In addition, samples for analysis of total dissolved C (TC) were obtained by transferring spring water into glass serum bottles, which were immediately capped with zero headspace to minimize degassing of CO₂. For analysis of dissolved organic C (DOC), water samples were acidified to 60 mM H₃PO₄ and sparged with N₂(g) for 6 min. A DC-80 carbon analyzer (Tekmar-Dohrmann, Cincinnati, OH) was used to determine TC and DOC, and dissolved inorganic C (DIC) was calculated as the difference between TC and DOC.

Saturation indices (logion activity product/solubility product) for amorphous As₂S₃ were calculated with the aqueous equilibrium model, MINTEQA2 (18) utilizing thermodynamic data proposed by Eary (19) for the solubility of As₂S₃ at 60°C. Important equilibrium reactions and aqueous complexes of As(III) in Eary’s model are

\[0.5\text{As}_2\text{S}_3(s) + 3\text{H}_2\text{O} = \text{H}_3\text{AsO}_3^{-} + 1.5\text{H}_2\text{S(aq)} \]

\[\text{log } K = -10.2 \]

\[1.5\text{As}_2\text{S}_3(s) + 1.5\text{H}_2\text{S(aq)} = \text{H}_2\text{As}_2\text{S}_6^{-} + \text{H}^+ \]

\[\text{log } K = -4.9 \]

where values of log K are referenced at 60°C. Newer evidence (20, 21) suggests the existence of at least one additional complex, As(SOH)(SH)⁺; however, model predictions of overall As₂S₃ solubilities were insensitive to the inclusion of this thioarsenite complex at pH ≈ 3 (25°C), and the temperature dependence of this species has not been investigated. Nevertheless, the recent work (20, 21) on As–S complexation suggests that further improvements will be made in our understanding of important aqueous species of As.

Ex Situ As(III) Oxidation Assays. Abiotic and biotic contributions to the rates of As(III) oxidation were evaluated on site in the presence and absence of both live and killed microbial mat samples. Cores (3.5 cm² by 0.5 cm depth) from individual microbial mat zones were transferred to 30-mL wide-mouth HDPE bottles and covered with 3.75 mL of 37% formaldehyde (killed controls with mat only), before adding 30 mL of spring water obtained from the beginning of the brown zone (4.4 m). Sample bottles were incubated in a neighboring hot spring of similar temperature (48°C). Subsamples (1 mL) were taken at 0, 1, 3, and 9 min; filtered using disposable in-line 0.22-µm filters; and analyzed for As(V) or As(ts) as described above.

Rate constants describing the oxidation of As(III) observed in both ex situ and in situ assays were estimated using a least-squares fitting routine assuming a first-order disappearance rate of As(III): \[[\text{As(III)}] = [\text{As(III)}]_0 e^{-kt} \], where \([\text{As(III)}]_0\) is the concentration of As(III) in \(\mu\text{M}\), \([\text{As(III)}]\) is the initial As(III) concentration, \(t\) is time in min, and \(k\) is the first-order oxidation rate constant in min⁻¹.
Solid-Phase Characterization. Mat samples corresponding to the primary zones observed in the thermal spring from 0 to 5.6 m were placed in 30-mL vessels, covered with corresponding spring water to achieve zero headspace, and transported to our laboratory. Within 12 h, subsamples of mat material were placed on graphite-coated Al stubs and coated with either Au or C for analysis using a cryostage scanning electron microscope (JEOL 6100) equipped with an energy-dispersive X-ray spectrometer (SEM/EDS). Additional samples of the brown mat were placed on 4-cm² Si wafers and analyzed using an X-ray photoelectron spectroscope (XPS) equipped with a cryostage (PHI model 5600ci). The samples were brought to −134 °C using the cyrostage to preserve biological integrity and kept under vacuum (<7 × 10⁻⁸ Pa) during analysis. Survey and narrow scans were obtained using an Al X-ray source (1486.6 eV) at a constant pass energy of 58.7 V, using a spot size of 400 µm diameter. Charge compensation was employed using the C 1s peak of 284.5 eV as a reference, and all peak positions and areas were calculated using spectral analysis software. Numerous narrow scans were obtained over 10 or 20 eV windows for the following photoelectrons and their respective reference binding energies: Fe2p3/2 (710 eV), As2p3/2 (1324 eV), As3d5/2 (42 eV), S2p (163 eV), N1s (399 eV), Si2s (153 eV), and O1s (532 eV). Total Fe and As contents of mat samples were determined by extraction with 12.1 M HCl for 12 h.
TABLE 2. Concentrations of Aqueous Components\(^a\)\(^b\) in the Representative Acid—Sulfate—Chloride Thermal Spring within Norris Basin, YNP, Sampled at the Point of Discharge

<table>
<thead>
<tr>
<th>ion</th>
<th>weak acids</th>
<th>concn (mM)</th>
<th>acid</th>
<th>concn (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na(^+)</td>
<td></td>
<td>16.3</td>
<td>Si</td>
<td>4.5</td>
</tr>
<tr>
<td>K(^+)</td>
<td></td>
<td>1.2</td>
<td>B</td>
<td>0.9</td>
</tr>
<tr>
<td>H(^+)</td>
<td></td>
<td>0.9</td>
<td>DIC(^c)</td>
<td>4.4</td>
</tr>
<tr>
<td>Cl(^-)</td>
<td></td>
<td>16.0</td>
<td>DCC(^c)</td>
<td>0.086</td>
</tr>
<tr>
<td>SO(_4^{2-})</td>
<td></td>
<td>1.3</td>
<td>S(II)</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>As(III)</td>
<td>0.033</td>
</tr>
</tbody>
</table>

\(^a\) Concentrations of additional detectable constituents (all values in m\(\mu\)): Al (180), Ca (150), Fe(II) (60), Zn (16), Mg (10), Ba (2), Mn (0.9), Sr (0.6), NH\(_4\) (70).
\(^b\) Undetectable trace elements and method detection limits: P, Se, Ag (<10 m\(\mu\)); Ti, Sb, Pb, Cr, Co, Sn, Ni, Mo, Ti (<1 m\(\mu\)); V, Cd, Cu, Zr, La, Y, Sc, Mn, Yb, Be (<0.1 m\(\mu\)).
\(^c\) Based on H\(^+\) activity of 0.79 m\(\mu\) (pH 3.1) and an estimated activity coefficient of 0.87 (Davies equation, 60 °C).
\(^d\) Dissolved inorganic C.
\(^e\) Dissolved organic C.

followed by analysis of filtered (0.22 m\(\mu\)) extracts using ICP-ES. Ratios of As(III):As(V) in the solid phases were also estimated by on-site extraction using 1 M NaOH (70 °C, 1.5 h) in \(\text{N}_2\)(g)-purged serum bottles (22). Following extraction, two 1.2-mL aliquots were removed from each serum bottle, neutralized with HCl, diluted to 5 mL, and analyzed for As(V) and As(ts) as described above.

Results and Discussion

Aqueous Chemistry of Thermal Spring. The colorful spring chosen for this study is representative of acid—sulfate—chloride springs common within Norris Basin, YNP. Spring discharge rates often vary annually with higher rates generally observed in the fall (23). The majority of the data presented in this study were collected during a period of relatively high flow between November 1999 and January 2000 when the source water temperature was 63 °C; however, we have observed fluctuations in source water temperature ranging from 58 to 63 °C over the course of a year. More importantly, the water temperature declines in both longitudinal and lateral directions, which is in part responsible for the dramatic biological zonation observed within 6 m of the spring source (Figure 1, Table 1). The predominant chemical constituents of the source water are given in Table 2 and were found to be essentially constant for the sampling events described in the current study (October 1999–June 2000). The primary cations and anions were Na\(^+\), K\(^+\), H\(^+\), Cl\(^-\), and SO\(_4^{2-}\), yielding an ionic strength of approximately 0.02. The source water also contained significant concentrations of sulfide (predominantly H\(_2\)S(aq)) at pH > 7.1; As, Si, DIC (4.4 m\(\mu\)); and DOC (80 m\(\mu\)). With the exception of As, concentrations of other trace elements were below levels considered toxic to biota in natural waters (Table 2).

During one of the sampling trips (November 16, 1999), aqueous samples were taken at each transect location five times within a 24-h period and analyzed for temperature, pH, Fe(tst), Fe(II), sulfate, sulfide, As(V), and As(ts). The concentrations of several constituents changed dramatically across the sampling transect, often corresponding to distinct biological zones observed downstream from the source (Figure 1). Most notably, although As(ts) remained constant at 33 m\(\mu\) from 0 to 5.6 m, ratios of As(V):As(ts) increased significantly from 0.05 at 2.7 m to 0.44 at 5 m (Figure 2), corresponding to sampling locations prior to and within the brown and green mats (4.4–5.6 m). The disappearance of As(III) observed within this stream interval corresponded to a fitted first-order As(III) oxidation rate constant (k) of 1.2 ± 0.08 min\(^{-1}\) or an As(III) half-life of 0.58 min, based on measured streamwater residence times and As(III) concentrations between 4.4 and 5.6 m (Figure 2B). The estimated rate constant for in situ As(III) oxidation is dependent on flow velocities, which were measured based on suspended particle travel times between sampling points. Although slower overall velocities may be possible as a result of slow flow near water–sediment or water–mat interfaces, a 3-fold longer residence time between 4.4 and 5.6 m would still yield a rate constant of k = 0.4 min\(^{-1}\) or half-lives ≥ 2 min for the oxidation of As(III). Even this conservative estimate represents, to our knowledge, the fastest rate of As(III) oxidation reported for natural water systems. Ratios of As(V):As(ts) measured within the 4–5.6-m stream interval were independent of the time of sampling over a 24-h period (Figure 2), showing that the oxidation of As(III) in this thermal spring was not dependent on abiotic photochemical processes or photosynthetic activity.

Concentrations of soluble sulfide declined from roughly 70 m\(\mu\) at the spring origin to below 7 m\(\mu\) at 4.4 m. The disappearance of sulfide may be partly due to the degassing of H\(_2\)S(g), since sulfide exists predominately as H\(_2\)S(aq) at pH < 7. In addition, characterization of solid phases present in the yellow mat (discussed below) provided evidence for the accumulation of elemental S, which may arise from rapid sulfide oxidation (24). It is difficult to conclude whether oxidation of reduced S species (H\(_2\)S, S\(^0\)) resulted in the formation of SO\(_4^{2-}\) because the concentrations of SO\(_4^{2-}\) at the source were nearly 20-fold higher than concentrations of dissolved sulfide and did not increase substantially over 0–5.6 m (Figure 3F). During one sampling trip (June 2000), the concentrations of thiosulfate were determined on site using ion chromatography and found to be below 0.9 m\(\mu\) throughout the sampling transect (R. B. McCleskey, D. K. Nordstrom, and J. W. Ball, USGS, written communication). Concentrations of dissolved Fe remained constant at 60 m\(\mu\)
from 0 to 5.6 m, and the majority (>99%) of total soluble Fe was Fe(II) at all sampling sites. Similar to that observed for soluble As, we did not detect any diel effects on concentration profiles of sulfide/sulfate, Fe(II)/Fe(III), or pH throughout the spring, suggesting that photochemical processes did not play an important role in controlling the relative concentrations of oxidized and reduced species. The concentration of DIC decreased from approximately 4.4 mM C at the source to 0.07 mM by 5.6 m (Figure 3C). DOC concentrations increased slightly from 0.074 at the source to 0.097 mM by 5.6 m. The loss of DIC may be due both to degassing of CO2 and to fixation of CO2 via autotrophic microorganisms.

Biotic Origin of As(III) Oxidation. The role of biotic and abiotic As(III) oxidation pathways was evaluated using ex situ assays performed on site. No oxidation of As(III) was observed in filtered (0.2 μm) spring water with or without formaldehyde over a 9-min assay, confirming that As(III) oxidation rates due to O2 or other electron acceptors in the aqueous phase were not significant as compared to time scales of oxidation occurring in situ (Figure 4A). Similarly, no oxidation of aqueous As(III) was observed in the presence of yellow mat with or without formaldehyde (not shown). The presence of aqueous sulfide in this zone may preclude significant rates of As(III) oxidation given that As(III) would be thermodynamically favored and that the rate of abiotic reduction of As(V) is known to be significant in the presence of sulfide at low pH (21). However, ex situ assays conducted in the presence of sediment collected at 4.2 m just prior to the brown mat (Figure 4B) showed significant rates of As(III) oxidation (k = 0.023 and 0.046 min⁻¹, respectively), corresponding to As(III) half-lives of 31 and 15 min. These results obtained on January 26, 2000, were confirmed during two additional field trips (June 6, 2000, and September 13, 2000), when similar rates of As(III) oxidation were observed. In contrast, rates of As(III) oxidation in these samples were insignificant when formaldehyde was used to inhibit biological activity (Figure 4B,C). The oxidation of As(III) was also observed in ex situ assays containing green mat (k = 0.028 min⁻¹); again, the oxidation of As(III) was suppressed with the addition of formaldehyde. The rates of As(III) oxidation estimated from ex situ assays were considerably lower than oxidation rates measured in situ, likely due to differences in mixing between transport and batch environments or to disturbance of the mat during transfer to ex situ reaction vessels. Nevertheless, the ex situ assays document that the rapid oxidation of As(III) observed in the thermal spring was due to biological processes associated with specific zones (and potentially specific microbial populations) as a function of distance from the spring origin. Furthermore, the half-life observed here is significantly shorter than the value reported by Wilkie and Hering (11) of 0.3 h for in-stream oxidation in Hot Creek, Sierra Nevada Mountains. The higher As(III) oxidation rates observed in the current study may be due to the high microbial biomass:solution ratio of this shallow (<1–2 cm over brown and green mats) and slower flowing spring (0.05–0.2 m s⁻¹ as compared to 0.4 m s⁻¹; ref 11).

Characterization of Microbial Mats. The rapid changes in aqueous geochemistry observed within 6 mo ft h e spring source are coupled with the zonation of biological mats inhabiting the thermal spring. Consequently, mat samples of the prominent zones were further characterized using a complement of analytical techniques to elucidate processes responsible for the biogeochemical cycling of As in the spring interval from 0 to 5.6 m.

The spring is dominated by a yellow mat from 0 to 2.7 m (Figures 1 and 5) that consists of filamentous microorganisms (diameter ≈1 μm) in association with chains of well-crystalline, rhombohedral S0 (Figure 5B). X-ray diffraction (XRD) peaks of solid phase from this zone exhibit an excellent
match to S0 (JCPDS Card 8-247), and EDS spectra show that As(III) oxidation when microbial activity is suppressed.

Fitted lines and estimated half-lives assume a first-order rate expression for the oxidation of As(III). Oxidation rates of As(III) as evaluated using X-ray photoelectron spectroscopy (XPS) and extraction with NaOH under anaerobic conditions to prevent the oxidation of As(III) (22). Results from XPS analysis give an Fe 2p/2 peak position of 712.5 eV, characteristic of Fe(III) as opposed to Fe(II), which generally shows peak positions of 709–710 eV (27). In addition, the peak position of the As 3d5/2 photoelectron was 45.2 eV, which is consistent with a more oxidized form of As such as Na2HAsO4 as suggested by Soma et al. (28). The oxidation state information attainable using XPS is not definitive, but for both Fe and As, the spectra strongly support the more oxidized forms, specifically Fe(III) and As(V). Furthermore, extraction of the solid phase with NaOH under anaerobic conditions followed by analysis of the supernatant showed that all of the desorbable As was As(V). Finally, the reddish-brown color of this solid phase is characteristic of iron(III) oxyhydroxides, unlike scorodite, which is often white to pale green (29). The ratios of As:Fe determined using total dissolution were 0.65, in agreement with EDS data of 0.74 but lower than that expected for scorodite.

Interestingly, the As:Fe ratios observed in the brown mat are consistent with values of 0.68 reported by Waychunas et al. (30) for the surface saturation level of 2-line ferricydrite coprecipitated with As(V). These authors suggested that high arsenate loading resulted in significant disorder of the iron(III) oxyhydroxide precipitate, favoring small crystallites of 4–10 Fe(III) octahedra (31), with As(V) tetrahedra forming bidentate binuclear complexes (30, 31). Although there has been some disagreement regarding the EXAFS-derived As–Fe distances and corresponding assignment of specific As–surface complexes on ferricydrite (32, 33), it is clear that high As loading retards particle growth and slows the rate of transformation of ferricydrite to more crystalline iron oxides such as hematite. Given the fact that solid-phase As was determined to be primarily As(V) within the brown mat, our results are consistent with sorption of As(V) and saturation of iron oxide

FIGURE 4. Concentrations of As(III) and As(V) measured during ex situ assays containing filtered spring water (always from 4.4 m in ex situ assays) (A), spring water plus sediment obtained just prior to brown mat (B), and spring water plus brown mat (C) in the presence (closed circles) and absence (open circles) of formaldehyde used to suppress microbial activity. Data presented here comes from assays conducted on site on January 26, 2000, incubated at 48 °C. Fitted lines and estimated half-lives assume a first-order rate expression for the oxidation of As(III). Oxidation rates of As(III) as a function of time in the presence of formaldehyde (killed treatments) are not statistically different than zero, indicating insignificant As(III) oxidation when microbial activity is suppressed.
surface sites during the precipitation of the Fe-rich phase. The fact that this phase is amorphous to XRD appears consistent with the effects of high As on the order and crystal growth of iron oxides.

The mechanism responsible for the oxidation of Fe(II) to form an iron(III) hydroxide phase has not been determined but likely is due to microbiological processes because it has been shown in other studies that the abiotic oxidation of Fe(II) to Fe(III) is extremely slow at low pH (13, 34). Furthermore, tentative identification of an Fe(II)-oxidizing organism in the brown mat (14) supports this hypothesis. The fact that aqueous Fe is dominated by Fe(II) throughout the spring transect indicates that the rate of Fe(II) actually oxidized is much lower than the total flux of Fe(II) from the spring source. Consequently, it was not possible to use changes in aqueous Fe concentrations as a method for estimating the deposition rate of iron(III) hydroxides in the brown mat, the time required for the formation of the brown, Fe-rich mats observed in this and similar acid–sulfate–chloride thermal springs is not currently known.

High rates of As(III) oxidation extended into the green mat (starting at 5.3 m) characterized by a dense surface coverage of algal cells (diameter ≈5 μm, Figure 5F) consistent with the morphology and temperature range of Cyanidium caldarium, which has been previously identified to be associated with low pH, thermal springs in YNP (35). The boundary between brown and green mats was not abrupt, and the distribution of algal cells was often discontinuous within this transition. These observations were confirmed using SEM/EDS. For example, in some cases, EDS analyses of the green zone showed significant concentrations of Fe and As with As:Fe ratios identical to values observed in the brown mat. In other cases, the only elements observed with EDS were C, O, and Si, suggesting a denser coverage of algal cells on Si-rich solid phases without Fe and As (Figure 5G). The algal population observed in the 45–51 °C temperature zone was subject to seasonal variation and was visible during the summer months (June–September) before reoccurring in the fall (October–November). Identical As(III) oxidation patterns were observed during the June sampling trip in the absence of a visible algal population, suggesting that the algal population does not contribute significantly to the high rates of As(III) oxidation measured in situ.

Microbial Community Structure and Mechanisms of As(III) Oxidation. Although our results show that the rapid oxidation of As(III) in this thermal spring is biologically mediated, we cannot at this time assign a specific microbial population or mechanistic pathway responsible for the oxidation of As(III). Known mechanisms of As(III) oxidation by microorganisms include chemolithoautotrophic metabolism where As(III) is used as an energy source (4) and extracellular oxidation of As(III) via an arsenite oxidase as observed in Alcaligenes sp. (8). We have more fully characterized the microbial populations present in the prominent
systems.

traits associated with As transformations in natural water provide an excellent opportunity to study the evolution of metabolic processes of microorganisms capable of utilizing As(V) as a terminal electron acceptor during anaerobic growth perpetuating geochemical cycling of As, in part due to the often reported ability of microorganisms to oxidize As(III) has important implications in the biogeochemical cycling of As, in part due to the often reported lower toxicity of As(V) versus As(III). Furthermore, the production of As(V) can result in the subsequent selection of microorganisms capable of utilizing As(V) as a terminal electron acceptor during anaerobic growth perpetuating transformation among As(III) and As(V). In general, the high concentrations of As in thermal springs of YNP provide an excellent opportunity to study the evolution of metabolic traits associated with As transformations in natural water systems.

Acknowledgments

We appreciate support from NASA (Project NAG5-8807), U.S. EPA (Project R827457-01-0), and the Montana Agricultural Experiment Station (Projects 914398 and 911310). Dr. D. Kirk Nordstrom (USGS, Boulder, CO) provided valuable discussion and preliminary on-site analysis of thiosulfate.

Literature Cited

Received for review January 19, 2001. Revised manuscript received May 15, 2001. Accepted May 15, 2001.